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The Aharonov-Bohm effect in double- and single-slit diffraction 

Daniel Shapiro t and Walter C Henneberger 
Department of Physics, Southern Illinois University, Carbondale, IL 62901-4401, USA 

Received 31 January 1989 

Abstract. Single- and double-slit diffraction patterns are obtained by means of path 
integrals. The slit function is taken to be unity. This permits the study of the single-slit 
case as a limit of the double-slit case when the slit width is equal to the slit separation. 
Introduction of a whisker of flux at the midpoint of the space between slits gives the 
Aharonov-Bohm shift. In the case of a wide single slit, one obtains conditions approaching 
those postulated in calculations similar to the scattering calculation of Aharonov and Bohm. 

1. Introduction 

The Aharonov-Bohm (AB) effect is a shift in an interference pattern that occurs when 
two distinct paths are open to an electron moving from a cathode to a screen, when 
a whisker of magnetic flux is inserted into an inaccessible region between the paths 
[ 11. In experiments, the two paths are produced electrostatically [2,3,4]. For the sake 
of discussion of theory, it is convenient to consider paths produced by a double-slit 
system. 

The mathematical treatment that has had the most success in producing results that 
agree with experiment is the Feynman path-integral method [5,6]. Much work has 
been done on applications of path integrals to the AB effect over the years [7-lo]. 

In this paper, we apply the Feynman path-integral method to a realistic double-slit 
system with a whisker of flux in the space between the slits. Since a slit function of 
unity is assumed, one may vary the parameters of the problem (slit width and separation) 
to cover any case of interest. In particular, one can consider the case in which the 
space between the slits is zero. This results in a single slit with the whisker of flux at 
its centre. If one now makes the resulting single slit very wide, one can approximate 
the conditions assumed in so-called Aharonov-Bohm scattering calculations. While 
the effect of the slit edges is still evident, the wider one makes the slit, the more nearly 
one approaches the conditions of the AB scattering problem. 

2. The single slit 

We begin by considering the single-slit problem, following Feynman and Hibbs [ll]. 
The situation is shown in figure 1. 
t Present address: Department of Biophysics, University of California, Berkeley, CA 94720, USA. 
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Figure 1. Single-slit geometry. 

An electron leaving the source at r = 0 has an amplitude +(x)  for arriving at the 
point x + xo on the screen at time T + r given by 

b 

+ ( X I  = I_, K(x+xo,  T +  7; X,+Y, T)K(XO+Y, T; 090) dY. (1) 

In (l), T is the time taken for the particle to go from the source at x = 0 to the plane 
of the slit, and r is the time to proceed from the slit plane to the screen. The slit has 
width 2b. The kernel for a free particle going from b to U is given by 

Applying ( 2 )  to ( l ) ,  completing the squares and rearranging terms gives 

+ (x = A e { I:b cos [ (- 1 1  + -) ( y + E) '1 dy 
2h T r 

+ i  J-:sin[~(F+;)(y+-)~] 1 1  dy} 
(3) 

with 

m 
2 r i h d TT 

A =  

and 

(4) 2h 2h ( T + T ) '  

The integrals are expressible in terms of Fresnel integrals 

(uy') dy = 
2u s "( r b ) .  

We set u = ( m / 2 h ) ( ( l / T ) + ( l / ~ ) )  and make a change of variable: y ' =  
y + ( 7x0 - Tx)/ ( T + T). The final result is 
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where 

X - TUo- b ( l +  T /  T )  
= ~i;rt;;~/ m ( l +  T/ ~ ) 1 / 2  

= m / m (  1 + T/ T)'" 

( 7 )  
x - 7v0 + b (1 + T /  T) 

and uo x0/ 7'. The probability distribution at the screen is thus proportional to 

3. The double slit 

One may generalise the result of the previous section by writing the double-slit 
amplitude as a superposition of single-slit amplitudes (figure 2) 

(9) 

(10) 

+ ( X I  = ++(X) + +-(X). 

+(XI = K e i8+(C++iS+)+K ei8-(C-+iS-) 

++(x) and +-(x) are obtained from (8) by a shift of origin. The total amplitude is 

with 
1/2 x='( m ) 

2 iA.rr(T+.r) 

c*= c(u:)-c(u:) 
S' = S (  U:) - S (  U;) 

X F X o F  700- b(1 + 7/ T )  
U:= J--- 

u 2 =  J--- 

.irfi.r/m( 1 + T /  T)l12 

.rrh.r/m(l+ T /  T)'12 
X 7 Xo T WO+ b( 1 + T /  T) 

In the case under consideration ++ = 8- = ( m / 2 A ) x 2 / (  T +  T )  so that the distribution 

(12) 

is 

P(X)  = K 2 [ ( C + ) 2 +  (s+)2+ (c-) '+  (S- )Z+2(c-c++ S-S').  

Figure 2. The double slit. 
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4. Aharonov-Bohm effect 

In order to study the Aharonov-Bohm effect, we utilise the Feynman propagator for 
an electron in an external vector potential. The Lagrangian is now 

where Lo is the free particle Lagrangian. 
The propagator is now given by 

e xo+x 

D3(x) exp [ f dt  (Lo+;  v * A ) ] .  Lo+, K'(x+xo, T+r,x0+y, T)= 

Since v - A d t  = A - dx, (14) is simply the free particle propagator multiplied by the 
Dirac phase factor 

exp (k j xo+x dx 8 A )  
XO+Y 

It is straightforward to show that the amplitude for an electron to arrive at a point x 
on the screen is 

+(x) = K e";(C++iS+)+K e'"(C-+iS-) (16) 

with 8: - 8' = e @ /  hc. Here @ is the flux embedded in a whisker at y = 0. 
The final result is 

P ( x )  = K'[(c+)'+(s+)'+(c-)z+(s-)21 

5. Results 

Results (equation (17)) were computed by means of a FORTRAN program that was 
based on Romberg's method [12]. Figure 3 shows the probability distribution in 
arbitrary units against distance for slit widths of two microns ( b  = 1.0 x m) and 
slit separation of 10 microns ( x o = 5 x  10P6m). The distance from the source to the 
slits is equal to that from the slits to the screen. The symmetric graph in figure 3 
corresponds to no magnetic flux. The graph is a normal double-slit diffraction pattern. 
The other graph of figure 3 corresponds to a phase e @ / h c  = 7~12. This pattern is 
shifted and is asymmetric about the origin. This is in agreement with all previous 
computations of the AB effect using the Feynman path integral method, and is in 
contrast to scattering calculations, such as the original computation by Aharonov and 
Bohm [ 131, which gives a symmetric scattering cross section. 

Figures 4( a )  and 4( b )  correspond more closely to experimental conditions. Here 
the slit separation is relatively large (xo = 1.0 x loP4 m, b = 5 x m). The envelope 
of a single-slit pattern is easily seen. One notes that the distribution in figure 4( b )  is 
shifted in a manner similar to that of figure 3 when e @ / h c  = ~ / 2 .  The probability 
distribution never falls to zero in these cases, except at the ends of the distribution. 
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Figure 3. Probability distribution in arbitrary units against distance from the midpoint of 
the slit system. b = m, T = lO-’s, T = 1O-’s. The symmetric graph 
corresponds to zero flux; the other to e@/ch = n/2. 
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Figure 4. ( a )  Zero flux distribution for b = 5 x 
( b )  Aharonov-Bohm shift for e @ / &  = n/2.  

m, xo = m, T = lO-’s, T = lO-’s. 

An interesting case is the limit as the two slits merge into a single slit (xo= b ) .  In 
this case, we have a single slit with a whisker of flux at the centre of the slit. The 
results are shown in figure 5 for b = xo = m. The zero-flux case gives the single-slit 
diffraction pattern, as expected. This is shown in the symmetric graph. The case with 
e @ / &  = 7 r / 2  shows a shifted pattern similar to that of the double slit. 

Finally, we approach the conditions assumed in the calculation of Aharonov-Bohm 
scattering [l]. We pass to the case of a whisker of flux at the centre of a very large 
slit (figures 6 ( a )  and 6 ( b ) ) ,  where b = xo= 1.0 x m, and figures 7 ( a )  and 7 ( b )  
(where b = xo = 1.0 mm). In these last graphs, we see clearly the diffraction pattern of 
the slit edge. In the case e @ / c h  = 7r /2 ,  we see that the asymmetry of the interference 
pattern persists, and the pattern itself is superimposed on a non-vanishing background. 

In order to compare this result with the scattering cross section of Aharonov and 
Bohm, it is necessary to pass to the Fraunhofer limit (separation between source and 
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Figure 5. Zero flux single-slit diffraction. 6 = xo = s (symmetric graph); 
Aharonov-Bohm shift for the same parameters. The flux whisker is at the centre of the 
slit; e @ / c h  = ~ f 2 .  
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Figure 6.  ( a )  Zero flux single-slit diffraction. 6 = xo = m, T = 7 = s. (6) 
Aharonov-Bohm shift for the same parameters with e @ / c h  = ~ / 2 .  

screen becoming extremely large, maintaining the slit equidistant from both). In this 
way, the wave incident upon the slit is very nearly plane, as in the AB computation. 
In the case of a wide slit, one may use geometrical optics. It is clear that the diffraction 
pattern of the slit edge lies along a straight line from the source to the slit edge. Since 
the slit lies halfway between source and screen, by similar triangles the entire diffraction 
pattern occupies a length that is (apart from some fuzziness) twice the size of the slit 
width. The Aharonov-Bohm disturbance occupies roughly a quarter of this total length 
on the screen. The size of the diffraction pattern can never increase significantly, since 
it is dominated by geometrical considerations. Hence, in the Fraunhofer limit, the 
angle subtended by the disturbance at the slit must approach zero. It is the subtended 
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Figure 7. ( a )  Zero flux single-slit diffraction. b = xo = m, T = T = s. ( b )  
Aharonov-Bohm shift for the same parameters with e @ / c h  = n/2. 

angle in this limit that must be compared with scattering theory. The conclusion here 
is that the scattering consists completely of forward scattering. 

The authors are convinced that the Feynman path integral method is incompatible 
with the assumptions on which the derivation of the Aharonov-Bohm scattering cross 
section is based. The authors are furthermore convinced that the results of the Feynman 
path integral method are the correct ones. The wavefunctions that are consistent with 
the Feynman propragator are the ones discussed by one of us in 1981 [14]. 
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